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Sentimentals

1 Introduction

This project aims to develop an assistive system for
visually impaired individuals by integrating both
RGB and depth data. It leverages the latest ad-
vancements in the cognitive capabilities of large
language models to provide real-time navigation
assistance and coherent language descriptions, en-
hancing the independence and safety of visually
impaired users in dynamic environments.

1.1 Motivation

Visually impaired individuals face daily challenges
in navigating their environments, particularly in de-
tecting and avoiding obstacles and understanding
the dynamics of objects around them(1). The mo-
tivation behind this project was to empower these
individuals by giving them a sense of their sur-
roundings using the latest advancements in deep
learning, specifically Vision and Language Models.
Our goal was to develop a system that can provide
descriptive insights to the user using the traditional
RGB as well as the depth information. The depth
data, when paired with time, can provide valuable
spatial insights to the user.

1.2 Previous Work

As this was an application-based project, we ana-
lyzed the currently available products addressing
the task we aimed to solve. We found two leading
works in this space: one by Meta (Meta Smart
Glasses) and another by EnvisionAI (EnvisionAI),
both of which are currently available in the market.
However, these glasses are limited (2) in the sense
that they only use RGB color images as inputs
and therefore lack explicit depth information.
Due to this limitation, they are restricted to
providing generic responses and descriptions to the
user, which may not convey an understanding of
distances – a crucial aspect for a visually impaired
person.

We argue that having explicit depth information
would be beneficial for a product marketed as an
assistive device for the visually impaired, as depth
perception can help a person better understand and
navigate their environment(3). While computer
vision algorithms have matured significantly
over the years, our objective goes beyond merely
outputting numbers and detecting objects from
a frame. Instead, we aim to produce coherent
language outputs that enable the user to make
better judgments while navigating. Additionally,
there is the task of filtering objects based on their
relevance to the specific task at hand(4). To achieve
this, we chose to employ a Large Language Model
(LLM) as our cognitive brain to convert raw
numbers from the computer vision algorithms
into coherent language outputs that are easy for a
human to understand.

In this work, we aim to use recent advancements
in the cognitive capabilities of LLMs to assist peo-
ple with visual impairment.

2 Approach

We envisioned our project as a product that could
be used by a visually impaired person. Given the
complexities of the real world, there are many cir-
cumstances the user may encounter. We selected
a subset of these circumstances and focused on
developing solutions, with the primary one being
navigation in the environment, which would benefit
most from depth modalities. Based on the prob-
lem, we hypothesize that LLMs have the cognitive
ability to understand temporal and spatial scenes
and, therefore, can act as a guide for visually im-
paired individuals by providing user-friendly de-
scriptions of the environment, given the right data
and prompts.

We discuss the modalities and our solution ap-

https://www.meta.com/smart-glasses/?srsltid=AfmBOorjofJaH99AniznTul7mkTnXdvFSMciN7zK6cM1EKqbcFkkRq_T
https://www.meta.com/smart-glasses/?srsltid=AfmBOorjofJaH99AniznTul7mkTnXdvFSMciN7zK6cM1EKqbcFkkRq_T
https://www.letsenvision.com
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proach below:

2.1 Navigation

One of the biggest hurdles for visually impaired
people is being able to move safely in dynamic
environments. To address this, we designed the
navigation module using a series of models and
techniques to parse relevant obstacles and provide
language cues to the user. The basic information
flow of this module is shown in Figure 1.

Figure 1: Navigation module pipeline. Note: models
specific to the navigation module are within the maroon
box.

This module required processes to run in parallel,
necessitating a modular system design to complete
this task. We discuss the major components of the
design below.

2.1.1 Camera Input
To obtain the depth modality, we used an Intel Re-
alSense Lidar Camera L515 capable of streaming
color and depth frames of 640x480 resolution at
30fps (5). The camera can be set up using the Intel
RealSense SDK on Linux-based devices(6) (sup-
port for Mac systems is limited). Since the camera
requires code to operate, we ran it in a separate
thread to continuously stream frames.

Data Collection

As some of our team members were remote stu-
dents, we also created a pseudo-class to mimic the
actual camera behavior using pre-saved data. This
allowed everyone to access the color and depth
streams without requiring the actual hardware. We
collected 12 videos of different environments in
and around Keller Hall using the depth camera to
be used for testing and evaluation of our methods.

2.1.2 Object Detection
Once we had the camera feed, we extracted in-
formation about the relevant objects in the user’s
view. To achieve this, we leveraged the YOLO ob-
ject detector, first introduced by Redmon et al. in
(7). We specifically used YOLOv11 (8)trained on
the COCO(11) dataset with 80 classes. The dataset
includes most commonly found objects in our sur-
roundings, which were sufficient for this project’s

scope. Hence, we did not need to train the system
on new classes. YOLO object detectors are ex-
tremely fast, with inference times of around 10ms
on consumer-grade GPUs, making them ideal for
real-time systems. The YOLO model takes an RGB
image as input and outputs bounding boxes and ob-
ject labels for objects in the frame. Since bounding
boxes are in pixel coordinates, we required corre-
spondence between these coordinates and the real-
world depth of the object, which can be assessed
using the camera’s depth information.

2.1.3 Object Localization in World
Coordinates

Mapping pixel coordinates to world coordinates
using depth information is a well-studied problem
in computer vision. However, challenges arose
because YOLO outputs bounding boxes rather than
single pixel points, and obtaining accurate depth
information was critical. Additionally, lidar sensors
inherently produce noisy data, requiring filtering
before use. A representative image is shown in
Figure 2.

Figure 2: Projection of a point from image to world
coordinates. Image Source.

To address these issues, we developed a simple
filtering technique for depth information. Given a
YOLO object detector’s bounding box output (Fig-
ure 3), we assumed that most of the area within the
bounding box is filled by the object. We then sam-
pled 25 points randomly within the bounding box
region, as shown in red. To estimate the object’s
depth, we calculated the median depth of these 25
points from the depth image, resulting in a robust
depth estimate.
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Figure 3: Randomly sampled points on an object.

Using the depth information and pixel coordi-
nates, we estimated the object’s world coordinates
relative to the user. This process ran in parallel on
its own thread once per second.

2.1.4 Large Language Model

From the above, we obtained a list of objects and
their world locations relative to the user. However,
this output, consisting mostly of numbers, was not
user-friendly. A collection of objects with numeri-
cal positions is not how humans perceive the world.
The previously discussed modules lacked cogni-
tive understanding of their inputs and outputs and
functioned as simple mathematical operations. To
make the data more meaningful, we used a Large
Language Model (LLM) as a cognitive agent to
condense and filter this information into human-
interpretable language.

However, we faced challenges in enabling the
LLM to infer from numerical data. After discus-
sions with our TA, Mr. James Mooney, we modified
the numerical input to a format more comprehen-
sible to the LLM. Specifically, we mapped raw
numbers to descriptive terms such as "far right,"
"slightly left," and "in front," as shown in Figure
4. Given the camera’s 70◦ field of view, we chose
θ1 = 10◦, θ2 = 20◦, and θ3 = 35◦. This approach
resolved the issue of the LLM outputting raw nu-
merical data to users, which was not intuitive.

Figure 4: Labeled regions within the camera frame.

As this system was intended for dynamic envi-
ronments, we provided the LLM with temporal data
to understand environmental dynamics. To achieve
this, we used a 15-second timeframe of camera
data. To manage this efficiently without mem-
ory overhead, we implemented a double-ended
queue (deque) as a buffer, achieving O(1) time
complexity for data addition and removal. The
buffer was filled with object locations obtained
using the YOLO object detector and localization
function discussed earlier. A schematic showing
temporal data flow is shown in Figure 5.

Using the temporal data, we employed few-shot
prompting to guide the LLM to provide language
outputs for the user. After experimenting, we
formatted this historical data in JSON for optimal
LLM performance. Additionally, to reduce repeti-
tive responses, we included the LLM’s previous
five outputs as part of its input, enabling better
reasoning about changes. This mitigated repetitive
outputs effectively. We used OpenAI’s ChatGPT-
4o-mini (12) for inference due to its low cost and
competitive performance. Sample outputs from
the model are available on the project webpage:
https://mohitydv09.github.io/nlpfinalprojectwebsite/.

The novelty of this work stems from the use of
depth information that we haven not seen in any
products available today. Two products in the same
domain, Meta Ray-Ban glasses and EnvisionAI
glasses, referenced earlier, only use RGB informa-
tion and are not marketed as helpful in navigating
the environment, but rather only as a visual infor-
mation parser. We wanted to tackle the most ap-
parent use of vision understanding for the visually
impaired, i.e., navigation in the real world. In the
scientific community, there are works in the space
of depth understanding by LLMs, such as 3D-LLM:
Injecting the 3D world into Large Language Mod-
els by Hong et al. (13), in which researchers have
created a model to take in 3D point cloud as in-
put and perform a diverse set of 3D-related tasks,
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Figure 5: Schematic showing the temporal flow of data in navigation mode.

such as captioning, dense captioning, 3D question
answering, task decomposition, 3D grounding, 3D-
assisted dialog, navigation, and so on. However,
we were unable to find any directly correlated work
on the task that we were trying to solve.

2.2 Scene Description
As our project was application-based and envi-
sioned as a product, we added this module as an
add-on feature. This mode takes the current frame
viewed by the user and provides a general descrip-
tion of the scene. For this task, we used an off-
the-shelf vision-language model, specifically the
BLIP model by Junnan Li et al. (14), available on
Hugging Face.

2.3 Visual Question Answering (VQA)
Another additional application that could be help-
ful to the visually impaired user is to have a more
detailed understanding of the environment. In addi-
tion to the SceneDescription, the user might be
interested to know more about a specific object or
area of the view. Inherently, such an application re-
quires a question-answering environment to make
sure that the specific need of the user is properly
understood and responded to. For example, the
the SceneDescription model outputs: "you are
in a classroom with a person in the middle of the
class next to a whiteboard." Then the VQA model
comes into play to respond to the user’s follow-up

questions such as: "other than the person next to
the whiteboard, how many people are in front of
me?" or "what color is the person’s shirt?" or "is
there a desk next to me?" or "what is on the desk?",
etc.

To develop such capability, similar to
SceneDescription, the BLIP model by Jun-
nan Li et al. (14), available on Hugging Face was
utilized. Specifically, the package used for this
purpose is blip − vqa − base. The upside of
using such a model is the efficiency of analyzing
the frame and responding to the user’s specific
question without developing a separate engine to
go back into the frame and extract the relevant
information; however, the downsides are that

• the answer is very direct and summarized into a
word or two or an extremely short sentence. For
instance, the answer to "what color is the person’s
shirt?" is "black", which is non-conversational.

• the answer could be irrelevant or may require
adjustment before responding to the user. For
instance, the answer to "list five more major items
in this room" could be "table, chair.", which is
not five but two items.

We used few-shot prompting to guide the LLM
to provide language output for the user. After ex-
perimenting, the final design of the conversation is
described here: a) use Scene Description model to
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provide a general understanding of the environment.
b) feed the user’s question to the BLIP VQA model.
c) feed the recent user’s question and VQA model
response as well as the history of this conversation
to the designed LLM.

As previously alluded, we used
OpenAI’s ChatGPT-4o-mini(9)for infer-
ence. Sample outputs from the model
are available on the project webpage:
https://mohitydv09.github.io/nlpfinalprojectwebsite/.

3 Application Pipeline

The primary objective of our study is to develop a
tool that assists visually impaired users. To achieve
this, it is essential to design a pipeline enabling
users to make verbal requests and receive verbal
responses from the tool. Also, we need to imple-
ment a classifier that can route the request to the
corresponding developed capability. Thus, three
additional features were added as a wrapper to our
products including:

• Speech-to-Text: used speech_recognition
Python package.

• Text-to-Speech: used gTTS Python package.

• Feature Classifier: used one-shot prompting to
classify the user’s request between our available
features. The classifier reports "Out of scope"
if our app does not have a certain capability re-
quested by the user.

4 Results and Evaluation

To evaluate our model, we opted for a human eval-
uation as it appeared to be the most suitable ap-
proach, given the absence of ground truth data
for our work. For comparison, we used vision-
language models (VLMs) as baselines, as they are
the closest to our intended methodology. Specif-
ically, we utilized BLIP(14) as our VLM. Since
existing VLMs lack the ability to input depth infor-
mation, they were restricted to using only the color
data from the camera. Additionally, VLM prompt-
ing is limited to either a question-answering mode
or an image-captioning mode, which constrains
their capabilities compared to our method.

For evaluation, we tested our method and BLIP
on two sample datasets we collected. Both models
were run at intervals of 5 seconds, and the outputs
were shown to individuals without visual impair-
ments for assessment. To streamline the data col-
lection process, we created a Google Form (link

Method Ours Baseline (VLM)
Sample 1 21/22 1/22
Sample 2 18/21 3/21

Total 39/43 4/43

Table 1: User Preference Count

to Google Form), which allowed users to easily
provide feedback. This approach helped us col-
lect 22 data points for evaluating the models. We
gathered data on two aspects: (1) a preference com-
parison between our method and the VLM baseline,
based on user preferences, and (2) the perceived
usefulness of the methods on a scale of 1–5.
The results of the evaluation are shown in Table 1.

Based on the user preference data we collected,
we calculated the Net Preference Score (NPS) for
our method, defined as:

NPS =
Votes for A − Votes for B

Total Votes
.

We achieved an NPS of 81.4% for our method
across the two sample datasets.

In addition to preference data, we also asked
users to rate the usefulness of the methods in de-
scribing the scene for visually impaired individuals
on a scale of 1–5. The aggregated results, showing
scores on the x-axis and the number of respondents
assigning each score on the y-axis, are presented in
Figure 6.

Figure 6: User-assigned scores for both models.

4.1 Evaluation Metrics

• User Preference Comparison: Count of user
preferences between the proposed method and
baseline (Table 1).

• Net Preference Score (NPS): NPS of 81.4%
for the proposed method.
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• Usefulness Rating: Users rated the methods
on a scale of 1–5 for describing the scene for
visually impaired individuals.

– Proposed method: mean score of 3.63
– Baseline VLM: mean score of 2.07

4.2 Evaluation of Usefulness Scores
From the results, it is evident that our method re-
ceived higher scores on the usefulness scale as well.
While the baseline VLM had a mean score of 2.07,
our method achieved a mean score of 3.63.

5 Limitations and Future Work

Based on the results, we can conclude that we suc-
cessfully developed a system that outperforms the
current method of using a VLM for the same task.
However, the overall utility of the model cannot be
definitively established due to the limited dataset
and the absence of evaluations by individuals with
visual impairments.

While the model demonstrated promise, there
are several limitations in the pipeline. First, the
reliance on object detectors introduces challenges,
as these models are imperfect and often produce
incorrect results and labels. We used a pre-trained
YOLO model with only 80 classes. Although this
limitation could potentially be mitigated through
fine-tuning on a relevant dataset, deep learning
models inherently suffer from occasional inaccu-
rate predictions. This limitation stems from the
broader field of computer vision and is beyond the
scope of this project.

Another constraint was the hardware available.
The Intel LiDAR camera we employed is designed
for indoor use and cannot reliably produce depth in-
formation outdoors or for objects beyond 9 meters.
This limitation, which became evident during test-
ing, restricts the use case of our system to indoor
environments and close objects. While this is not a
limitation of our pipeline but rather of the hardware,
it could be mitigated with improved equipment.

A further limitation lies in the fixed time win-
dow for making inferences with the LLM. Most
large language models work by processing a stream
of tokens and predicting the next word. Ensur-
ing the LLM only produces output when needed,
rather than at fixed intervals, proved challenging.
Ideally, we would enable dynamic, context-aware
inferences where the LLM responds only when de-
tecting changes in the environment. Achieving this
functionality would require a deep learning model

capable of continuous input processing and context-
dependent output generation—an area for future
exploration.

Additionally, we developed three distinct mod-
ules for the product within the available time. How-
ever, we foresee the potential for numerous ad-
ditional modules. Once a more extensive set of
modules is developed, similar to the classifier mod-
ule described in the pipeline, an LLM-based agent
could be employed to infer user intent from inputs
and autonomously determine which module to exe-
cute.

6 Discussion

6.1 Potential for Publication

This work was highly application-oriented, and
we envisioned the system as a product, which is
why we didn’t focus on the potential for publishing
this work. That said, there is definitely a direction
in which this work could be made more research-
oriented. Since we used the LLM’s spatial scene un-
derstanding, there is a research opportunity in this
space. We found some recent work, SceneGPT(15)

by Shivam Chandhok, where the author used a
similar approach to ours and enabled an LLM to
understand spatial relationships between objects,
leveraging a graph structure. This is very recent
work, published in August 2024, which shows that
research is being done in this direction.

6.2 Replicability

The work we did is replicable as long as the hard-
ware to obtain depth data is available to the user.
With LiDAR technology being adopted in vari-
ous avenues, the hardware cost is also decreasing
rapidly. With the right hardware, our work is eas-
ily replicable, and we have open-sourced both the
code and the methodology. We would be happy to
see this work contribute to assistive technologies
in any way it can. We used OpenAI’s ChatGPT as
our LLM, which is proprietary and not available as
open-source. However, the methodology is not de-
pendent on the specific LLM used, and with some
tuning, many of the openly available LLMs could
be used for the same task.

6.3 Potential Impact / Ethics

Although our work showed promising results, we
would not be able to claim that we have solved
the challenges that visually impaired people face
in their lives. This work is merely a step in the
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right direction and requires additional efforts to be
truly helpful to the users. It is also important to
note that we did not consult any visually impaired
individuals for this work; therefore, there might be
gaps in our understanding of the users’ needs.

During the course of this project, we also real-
ized some of the technical challenges involved in
developing our work into a product. For instance,
the accuracy of depth data depends on the qual-
ity of the hardware, and LiDAR-based devices can
be quite heavy for users to handle continuously.
Additionally, there are computational limitations
associated with deep learning models used in this
pipeline, which require powerful hardware to run
locally. Although this could be somewhat mitigated
by using a cloud server, it introduces the potential
risk of misuse of users’ private data.

Lastly, with specialized hardware, there is the
challenge of cost and accessibility. If the system is
only affordable to a subsection of society, it could
exacerbate disparities between people.

7 Conclusion

In this work, we explored the use of large language
models as cognitive filters and parsers of depth
and visual information for the specific use case
of assisting visually impaired individuals. The re-
sults demonstrate that the concept is feasible and
warrants further exploration with enhanced hard-
ware and resources. Due to time and resource con-
straints, we tested the method in a limited number
of scenarios. However, with additional results and
fine-tuning using reward-based methods, we antici-
pate significant improvements in the system.

8 Individual Contributions

• Mohit Yadav: Data collection, system de-
sign, navigation module pipeline implementa-
tion, scene description module implementation,
LLM integration, evaluation and result analysis,
project website creation, final report writing.

• Alex Besch: Data collection, navigation module
pipeline implementation, LLM Integration, eval-
uation and result analysis, project website, final
report writing.

• Abbas Booshehrian: Project idea, Visual Ques-
tion Answering module implementation, LLM
Integration, Speech-to-Text integration, Text-to-
speech integration, Application classifier integra-
tion, Creating demo, final report writing.

• Ruolei: Early writing of the final report, final
report review.

9 Additional Materials

We created a webpage to show our work and
prerecorded demos, which are available at the
below link:
mohitydv09.github.io/nlpfinalprojectwebsite

The code for our project with the detailed
read me file showing how to run the code can be
found on our GitHub repo at the below link:

GitHub: github.com/mohitydv09/nlp-final-project
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[1] Z. Başgöze, J. Gualtieri, M. T. Sachs, and E. A.

Cooper, "Navigational aid use by individuals with
visual impairments," PLoS One, vol. 17, no. 3, p.
e0266089, 2022

[2] "Ray-Ban Meta Glasses: Where Do The Fashionable
Smart Glasses Stand On Accessibility?", Envision
Blog, 2024.

[3] M.H. Abidi, A.N. Siddiquee, H. Alkhalefah, V. Sri-
vastava, A comprehensive review of navigation sys-
tems for visually impaired individuals, Heliyon. 10
(2024) e31825.

[4] E. Waisberg, J. Ong, M. Masalkhi, N. Zaman,
P. Sarker, A.G. Lee, A. Tavakkoli, Meta smart
glasses—large language models and the future for
assistive glasses for individuals with vision impair-
ments, Eye. 38 (2024) 217–219.

[5] "Intel RealSense LiDAR Camera L515," Devie Store,
2024

[6] "Linux Distribution," Intel RealSense, 2024.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
"You Only Look Once: Unified, Real-Time Object
Detection," in *Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR)*, 2016, pp. 779–788.

[8] "Guide to Fine-Tuning and Deploying YOLOv11 for
Object Tracking," E2E Networks Blog, 2024. [On-
line].

[9] OpenAI, “ChatGPT” (Mar 14 version) [Large lan-
guage model], https://chat.openai.com/chat

[10] J. Li, D. Li, C. Xiong, and S. Hoi, "BLIP: Boot-
strapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation,"
arXiv:2201.12086 [cs.CV], 2022.

[11] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R.
Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zit-
nick, and P. Dollár, "Microsoft COCO: Common
Objects in Context," arXiv:1405.0312 [cs.CV], 2015.

[12] OpenAI, "ChatGPT-4: Advancing Language Model
Capabilities," OpenAI, 2023. Available: https://
openai.com/chatgpt.

[13] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z.
Chen, and C. Gan, "3D-LLM: Injecting the 3D World
into Large Language Models," arXiv:2307.12981
[cs.CV], 2023. Available: https://arxiv.org/
abs/2307.12981.

[14] J. Li, D. Li, C. Xiong, and S. Hoi, "BLIP: Boot-
strapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation,"
arXiv:2201.12086 [cs.CV], 2022. Available: https:
//arxiv.org/abs/2201.12086.

[15] S. Chandhok, "SceneGPT: A Language Model
for 3D Scene Understanding," arXiv:2408.06926
[cs.CV], 2024. Available: https://arxiv.org/
abs/2408.06926.

8

https://openai.com/chatgpt
https://openai.com/chatgpt
https://arxiv.org/abs/2307.12981
https://arxiv.org/abs/2307.12981
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2408.06926
https://arxiv.org/abs/2408.06926

	Introduction
	Motivation
	Previous Work

	Approach
	Navigation
	Camera Input
	Object Detection
	Object Localization in World Coordinates
	Large Language Model

	Scene Description
	Visual Question Answering (VQA)

	Application Pipeline
	Results and Evaluation
	Evaluation Metrics
	Evaluation of Usefulness Scores

	Limitations and Future Work
	Discussion
	Potential for Publication
	Replicability
	Potential Impact / Ethics

	Conclusion
	Individual Contributions
	Additional Materials
	Acknowledgment

